
JOURNAL OF APPROXIMATION THEORY 26, 124-131 (1979)

Chebyshev Approximation with Sums of Logarithmic Functions

ECKARD SCHMIDT t

Department ofMathematics, University of Calgary, Calgary, Alberta, Canada

Communicated by E. W. Cheney

Received March 29, 1974

1. INTRODUCTION

In [1], Rice suggests the investigation of approximation by functions of
the form

n

L ai 10g(1 + fiX),
i~l

X E [-1,1], fiE(-I, 1), (1.1)

with emphasis on varisolvence.
We give an example showing that the system

{log(I + fiX), i = 1,... , n}, (1.2)

is not a Haar system in general. Thus, its value for interpolation and uniform
approximation is rather limited. It turns out that the presence of the constants
plays a crucial role. Dunham [2] was able to show that the system

{I, Iog(I + fiX), i = 1,... , n} (1.3)

is a Haar system. On that basis, he derived characterization criteria for best
approximants in the family

!V E qQ, ex], vex) = ao+ ~1 ai 10g(I + fiX), a i E ~, f i E ~, fiX> -I!. (1.4)

However, for the family (1.1), the existence of a best approximant cannot be
guaranteed.

We expand the above family to ensure existence, and we give characteri­
zation criteria that contain Dunham's as special cases. The generalized
family contains, besides the logarithmic functions, plynomials and certain
rational functions. Its properties. are similar to those of exponentials,
including a compactness property [7]. It differs from the latter as one non­
linear parameter is not free.

t Deceased.
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2. THE ApPROXIMATING FAMILY

First, we present the example mentioned above.

125

EXAMPLE 2.1. Let p(X):= 01 10g(I + t1X) + 02 10g(1 + t2x). Let
02 = -201 =f:. 0, Xl = 0, x2 = t2 = 1/3, t1 = 1/9. Then, p(x) ~ °and
p(x1) = p(x2) = 0.

Hence, (1.2) is not a Haar system in general. This implies that a definition
of the degree of varisolvency has to use both number and value of the non­
linear parameters t; . This author prefers a concept of a degree that uses
only the number of the t; , counting multiplicities.

To expand (I.3) properly to ensure existence, we use the framework of
y-polynomials; see, e.g., [9]. Given a kernel function y(x, t), one considers
the set of functions, so-called y-polynomials.

with

[Y(Xi' t;)](i) := (ai/ati) y(x, t)lt=i;'

(2.1)

(2.2)

To generate the logarithmic functions and to include the constant functions,
we define

y(x, t) := I + log(l + tx). (2.3)

We will use this kernel under the constraint that one of the nonlinear param­
eters I; be zero.

Clearly, any function of the form indicated in (1.4) can be represented as

n+1

v(x) = L b;y(x, t;),
;=1

with at least one ti = °
and vice versa. We consider, without loss of generality, the intervals
X = [0, I], T = (-1,00), and endow qo, I] with the uniform norm:

[[ u 11:= sup I u(x)[.
",,,[0.1]

Using definitions (2.2) and (2.3), we define the following approximating
family

Vn := lh Eqo, I], h(x) = t1 %0 O;i[Y(X, t;)](j),

O;i E IR, ti E T,'distinct, t1= 0, t1 (mi + I) ~ n\. (2.4)
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Thus, a typical element of Vn is a function

I I m, x j

hex) = p(x) + t:2 aiO 10g(1 + fiX) + t2 ~1 aij (1 + f;x)j , (2.5)

withp a polynomial of degree at most m1and L::~1 (m i + 1) ~ n.
An important subset of Vn is obtained by letting mi = °for i = 1,... , l.

We define

The need for including the polynomials or, in other words, specifying one
of the nonlinear parameters to be zero can be illustrated by the following
example.

EXAMPLE 2.2. Let

2

p(x) = L ai[l + 10g(1 + fiX)],
i~l

with a1 = 1, a2 = -2.
Define

(2.7)

'= (~)1/2
Al . 2e '

Then, it is easy to see that

(2.8)

and
for k = 1,2 (2.9)

[1 + 10g(1 + kA1)] - 2[1 + 10g(1 + kA2)] = 0. (2.10)

Now, let X be arbitrary but fixed 0 < X ~ ! and let Xl = X, X2 = 2x.
Define

f i := Adx, i = 1,2. (2.11)

Then, p(x) ¢ 0, p(x1) = P(X2) = 0, Xi EX, f i E T, i = 1,2. Here, f; oF °
for i = I, 2, and we conclude that the constraint in the definition of Vn

that one f i be zero cannot be omitted. As is easily seen, one can describe
Vn by characterizing the derivatives of its elements as follows

Vn = hE qX),

h' = p/q, with p a real polynomial of degree at most

q(x) = fff (1 + SiX), Si E IR, q(X) > °o'n xl·
n - 2,

(2.12)
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Here, the Si are not necessarily distinct or nonzero. A few further definitions
will be useful.

DEFINITION 2.3. A function hE Vn is said to be in canonical form if it
has a representation (2.5) with m1 being the degree of the polynomial p

and ai"'; =Ie 0 for i = 2,... , I.

DEFINITION 2.4. Let a function hE Vn be in canonical form. Then, the
number

!

k(h) := L (mi + 1)
i~l

(2.13)

is referred to as the degree of h and 1= I(h) is called the length of h. An
element of Vn has length 1 if and only if it is a polynomial. The degree is
well-defined since the functions involved are linearly independent as is seen
from Theorem 3.1. Furthermore, it should be noted that in accordance with
the restriction t1 = 0, the term p(x) in (2.5) contributes at least 1 to the
defining sum in (2.13) whether or not p(x) = o.

3. UNIQUENESS AND CHARACTERIZATION OF BEST ApPROXIMATIONS

Example 2.1 shows that the kernel Yet, x) as defined in (2.1) is not strictly
sign regular of any order n :;:?: 2 and the results of Braess [4] on Descartes
families are not applicable here. However, as is seen from Theorem 3.1,
the defining determinantal inequalities (2.5) in [4] are valid under the
restriction that one of the ti is zero. In this section, we follow standard
arguments using the local Haar condition [5].

THEOREM 3.1. Any nontrivial function in Vn has at most n - 1 zeros in X,
counting multiplicities.

Proof Let h ¥= 0 be in Vn • Then, from the equivalent representation
(2.12), it follows by Rolle's theorem that h can have at most n - 1 (distinct)
zeros. Since h satisfies a differential equation of the form

u1n)(x) + Pn_1(X) U1n- 1)(X) + ... Po(x) u(x) = 0

with continuous coefficients, this implies (see, for example, [6, Chap. 3])
that h can have at most n - 1 zeros, counting multiplicities. An important
consequence is the following

COROLLARY 3.2. The difference of a function hE Vn with degree k(h) and
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any other function in Vn has at most n + k(h) - 2 zeros in X, counting
multiplicities.

Proof Let hI and h2 be two arbitrary functions in Vn and assume corre­
sponding superscripts in their respective canonical representations. Then,

k(hl + h2) ~ k(hl) + k(h2) - 1 - min{ml, mI2},

~ k(hl) + k(h2) - 1.

DEFINITION 3.3. A function g E C(X) will be said to have an alternant
of length m if there are m points Xi in X such that Xl < X2 < ... < Xm ,
Ig(Xi) I = maxx"x Ig(X)I and g(Xi) = -g(Xi+I) for i = 1,... , m - 1.

Now, we can state the main result of this section.

THEOREM 3.4. LetfE C(X) and h E Vn .

(i) If f - h has an alternant of length n + k(h), then h is the unique
best approximation to f in Vn .

(ii) Ifh is a best approximation to f in Vn , then f - h has an alternant
of length n + I(h).

(iii) There is at most one best approximation to fin Vno. An element
h E Vn

O is the best approximation ifand only iff - h has an alternant of length
n + I(h).

Proof Statement (i) follows by standard arguments from Corollary 3.2.
Let now h* be a best approximation tofin Vn , k* = k(h*) and 1* = I(h*).
We can write h* as

mr* l* mi*

h*(x) = L aixi + L L bii [1 + log({ + tix)](j)
i~O i~2 i~O

n

+ L ci[1 + log(l + SiX)],
i=k*+l

(3.1)

with bim .* # 0, Ci = 0, and certain fixed Si =j:. 0, distinct and distinct from
the ti . Let U(h*) be the set of all functions in Vn that can be represented
in the form of the right-hand side of (3.1) and satisfying the above conditions,
except Ci =j:. 0. Then, for an arbitrary function g E U(h*), the corresponding
gradient space is spanned by the functions

1 + log(l + tix),

1 + log(l + SiX),

xi/(1 + tiX)i,

and is contained in VnH*-I'

i = 2,... ,1*,

i = k* + 1 ,..., n,

i = 2,... ,1*, j = 1,..., mi* + 1

(3.2)
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Since 1* ~ k*, Theorem 3.1 implies that U(h*) satisfies the Haar condition
locally with the dimension of the gradient space being n + 1* - 1. Obviously,
h* is also a best approximation to f in U(h*) and thus, (ii) follows by [5,
Theorem 12]. Statement (iii) is implied by (i) and (ii) since l(h) = k(h) if
hE Vno.

4. A COMPACTNESS RESULT

In this section, we show that bounded subsets of Vn are compact in the
topology of compact convergence, as is the case with exponential sums [7].
As a tool we use the following lemma, which generalizes a result in [8].

LEMMA 4.1. Let Me C2[a, b] be a uniformly bounded set of functions
with

II g 11:= sup Ig(x)! ~ K < 00,
TEla.b]

for all gEM (4.1)

and let there exist a uniform bound for the number of zeros of g". Then,
there exists an infinite subset 111 of M, a finite subset Z of [a, b] and a So > 0
such that with

/6 := {x, I x - z I > S, Z E Z u {a} u {b}}, (4.2)

the inequality
Ig'(x) [ ~ 2KjS (4.3)

holds for all g E 111, all x E /6 with any S, 0 < S ~ So .

Proof We can select a sequence {gm} C M for which the zeros of gm',
g;;' (both assumed to be not identically zero) converge as m -* 00. Let Z
be the set of the corresponding limits. The remainder of the proof, which we
omit, is a straightforward argument using the monotonicity of Igm' I on ap­
propriate subintervals.

THEOREM 4.1. Any set

Vn,K:= {h E Vn , II h II ~ K < oo}, (4.4)

contains a sequence that converges uniformly on any compact subinterval of
(a, b) to an element of Vn • If d, 0 ~ d ~ n - 1, nonlinear parameters
converge to the boundary of T, then the limit function is in Vn - d •

Proof Since for each hE Vn , the first and second derivative has at most
n - 2 and 2n - 4 zeros, respectively, there exists, by Lemma 4.1, a sub­
sequence {hm } C Vn •K and a nonempty closed interval Y such that the hm'
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are uniformly bounded on Y. By (2.12), we have hm' = Pm!qm, where Pm
is a polynomial of degree at most n - 2 and

n-1

qm(x) = n (1 + srx),
i~l

(4.5)

with real sr. Upon normalizing II qm' Ily = 1, we see that there exists a
subsequence and polynomials P and q such that Pm -+ P and qm -+ q, uni­
formly. This implies that the coefficients and zeros converge. Since all zeros
of qm are real and lie outside [0,1], there are no zeros of q in (0, 1). Now,
let c = limm -+co hm(t) and r = Plq = p/ij, where p and ij have no common
factors. We define

hex) := c +r r(t) dt.
1/2

(4.6)

Then, for any 8, °< 8 < 80 , hm -+ h, uniformly on [8, I - 8]. Now, we
show that h is in Vn • First, we observe that h has no singularity at x = °
or x = 1, because if it had one, there would exist an x in the open interval
(0, 1) such that

r ret) dt > 2K,
1/2

which would imply that Ih(x)I > K, contradicting the hypothesis" hm II :( K.
As a result of the normalization, ij(x) must be of the form

v

ij(x) = A . Xi I1 (l + tiX),
i~l

with A a real constant. Lemma 4.1 implies thatj can be at most 1. However,
j must be zero, because otherwise, upon integration, we would get a term
C . log(x), contributing a nonremovable singularity for h at x = 0, contrary
to the above observation. A similar argument for the left-hand end of the
interval shows that ij(x) has no factor (1 - x). Thus, we have proved that h
is in Vn using (2.12). Furthermore, we have shown that if d is the number of
nonlinear parameters converging to 00 or -1, then d linear factors, Xi,

(l - x)i, j + i = d are common to P and q and h' has a representation
h' = p/ij with op :( n - 2 - d, oij :( n - 1 - d, from which we conclude
hE Vn- d •

5. EXISTENCE

Not every function in C(X) has a best approximation in Vno for n ~ 2, as
is clear from (lIt) . log(l + tx) -+ x as t -+ 0. However, the results of
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the previous section imply that the extension of Vno is appropriate to ensure
existence of a best approximation.

THEOREM 5.1. Let / E qo, 1]. There exists at least one best Chebyshevian
approximation to / in Vn •

Proof Let {hm } C Vn be a minimizing sequence, i.e.,

lim II hm ~ /11 = inf II h - /11,
m-tCO hEVn

the norm being the supremum norm over [0, 1]. This sequence is uniformly
bounded and by Theorem 4.1, contains a subsequence that converges
uniformly on every compact subinterval of (0, 1), hence, pointwise on (0, 1),
to an element h* in Vn • Since/is continuous, a standard argument (see, e.g.,
[3]) then shows that h* is a best approximation to / in Vn •
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